A Colloidal Nanoparticle Form of Indium Tin Oxide

Innovar Scientific Inc. Lucas, Texas USA

<u>Overview</u>

- Introduction & Motivation
- Background
 - Basic Physics of ITO
- System Synthesis
- Basic Material Properties
- System Optimization
- Electron Generation
- Summary

Introduction & Motivation

- Indium Tin Oxide (ITO):
 - Most widely used Transparent Conductive Oxide (TCO) material.
 - Essential material for all LCD and Plasma displays....currently.
 - Additionally: Anti-static, heat dissipation, organic LEDs, CIGS solar
 - Demand/Supply ratio rising dramatically.
- Interest in a solution-dispersible nanoparticle form:
 - Inkjet Printing of TCOs process speed and less Indium waste.
 - Dip-Coating for more complex geometries.
 - Ideal system is composed of crystalline nanoparticles that can be homogeneously dispersed in an ink solution with no agglomeration.
- A methodology has been developed to produce a colloidal nanoparticle form of ITO that specifically meets these requirements.
- Functional properties can be optimized prior to application.
- Allows study of ITO by new methods.
- Process can be scaled for mass-production.

Background: Transparent Conductivity

- Degenerate doping of wide band gap >3eV
 - dopant of higher valence for n-type.
 - Impurity potentials w/ activation energy E_D
 - Spatial extent is electron Bohr radius,

$$a^* = \left(\frac{\varepsilon_{\infty}}{m_c^*}\right) \left(\frac{\hbar^2}{\pi e^2}\right) \cong 1.35 nm_{(ITO)}$$

Increased doping promotes wavefunction overlap

- Low: impurity levels are discrete w/o significant interaction.
- Medium: potentials interact, split, and form an impurity band.
- High: wavefunction overlap to allow conduction by at low temperature.

Mott Criteria: Semiconductor-to-Metal Transition

assuming a Poisson distribution of impurities,

$$2a_B^* = \frac{3}{2\pi} N_{crit}^{-1/3} \qquad N_{c\tilde{a}} 5.62 \times 10^{18} \, cm^{-3} \, (ITO)$$

Background: Optical Properties of ITO

- "Optical Window" between UV and IR regions.
 - Lorentz oscillator model and Drude theory for the free-electron plasma.

$$\varepsilon(\omega) = (N - iK)^{2} = \varepsilon_{\infty} \left[1 - \frac{\omega_{p}^{2}}{\omega^{2} + \gamma^{2}} - i \frac{\omega_{p}^{2}(\gamma/\omega)}{\omega^{2} + \gamma^{2}} \right]$$

Plasma Frequency

$$\omega_p = (ne^2 / \varepsilon_0 \varepsilon_\infty m_c^*)^{1/2}$$

- Dielectric behavior for $\omega > \omega_p, \gamma$
- Reflective behavior for $\omega < \omega_p, \gamma$

Background: Conduction Band Filling

Total Band Gap Expansion

$$E_g^m - E_g^o = \Delta E_g^m = \Delta E_g^{BM} - \Delta E_g^{BGN}$$

$$\Delta E_g^m = \frac{\hbar^2}{2m_{vc}^*} (3\pi^2 n)^{2/3} - \frac{e^2}{2\varepsilon_{\infty}\pi^2} (3\pi^2 n)^{1/3}$$

- Undoped Indium Oxide is slightly degenerate due to low level of oxygen vacancies.
- Donor doping with Sn promotes CB filling and band gap expansion ... Burstein-Moss effect.

$$\Delta E_g^{BM} = \frac{\hbar^2}{2m_{vc}^*} k_F^2 \qquad k_F = (3\pi^2 n)^{1/3}$$

(effective masses determine fill rate)

Above the Mott criteria, Many-Body Interactions promote Band Gap Narrowing.(Coulomb interactions, mutual exchange forces, and attractive impurity scattering)

$$\Delta E_g^{BGN} = \frac{e^2 k_F}{2\varepsilon_{\infty} \pi^2}$$

(exchange interactions only)

Background: Frank and Kostlin Defect Model

Indium Oxide - Bixbyite

 Prevalence of these clusters will increase with Sn content.

- Sn(4+) substituting In(3+) = Sn*
- $(2Sn_{In}^{\bullet}O_{i}^{"})^{x}$ neutral associates Frank and Kostlin (1982)
- Reduction yields *n* per:

$$(2Sn_{In}^{\bullet}O_{i}^{"})^{x} \rightarrow \frac{1}{2}O_{2}(g) + 2Sn_{In}^{\bullet} + 2e'$$

- O_i " absent in In_2O_3 and always present in ITO.
- Ratio of Sn to O_i" in oxidized ITO ~2
- Nearest-neighbor Sn-O_i-Sn associate clusters "trap" interstitial oxygen.

System Synthesis : Rapid-Injection Method

Time

Diffusive Growth From Solution

Basic Properties: Composition, Phase, Morphology

400 planes observed in the inset.

- Injection of primary amine at 300C
- Octadecylamine
- Highly crystalline particles
- ~5.4nm with narrow size distribution
- 9.3% Sn measured by ICP-MS

Basic Properties: Surface Ligand Characteristics

Colloidal Nanoparticles, dispersed in hexane.

Indium Oxide Indium Tin Oxide

- Dispersible with no agglomeration (months / years at room temp.)
- FT-IR analysis of purified and re-dispersed solution.
- C-H and C-O stretch of carboxylic acid. N-H stretch of amine.

Basic Properties: Optical Properties (Indium Oxide vs ITO)

System Optimization: Dopant Concentration Studies

Sn (%) Used	Sn (%) ICP	Doping Eff. (%)	Phase ID	SnO or SnO ₂	Particle Diamter (nm)	Lattice Parameter (Å)
0	0	n/a	In ₂ O ₃	none	9.5	10.1225
2	1.97	98.51	In_2O_3	none	8.5	10.1282
4	3.93	98.36	In ₂ O ₃	none	7.6	10.1301
6	5.64	93.97	In_2O_3	none	6.8	10.1327
8	7.42	92.70	In_2O_3	none	6	10.1351
10	9.34	93.43	In_2O_3	none	5.4	10.1369
12	10.93	91.08	In ₂ O ₃	none	4.9	10.1381
14	12.60	90.03	In ₂ O ₃	none	4.5	10.1392
16	14.41	90.05	In ₂ O ₃	none	4.2	10.1399
18	16.24	90.21	In_2O_3	none	4.1	10.1414
20	18.03	90.17	In ₂ O ₃	none	4.1	10.1419

Position 2-Theta

System Optimization: Optical Effects

Potential Influence of Electron Confinement

Free CB Electron

$$\Delta E_g^m = \frac{\hbar^2}{2m_{vc}^*} (3\pi^2 n)^{2/3} - \frac{e^2}{2\varepsilon_{\infty}\pi^2} (3\pi^2 n)^{1/3}$$

$$k_F = (3\pi^2 n)^{1/3}$$

Derived using classical Newtonian mechanics and the de Broglie wave nature. Based on momentum of the free electron.

Confined CB Electron

Time-Independent Schrodinger

$$\frac{-\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + U(x)\psi(x) = E\psi(x)$$

Solution within a confined box of length *L* $\psi(x) = A\sin(kx) + B\cos(kx)$

Only sine waves exist within and thus,

$$k = \frac{n\pi}{L}$$

EMA Model of Electron Confinement in ITO

$$E_n = \frac{1}{2}mv^2 = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{h^2}{2m} \left[\frac{k}{2\pi}\right]^2 = \frac{n^2\hbar^2\pi^2}{2mL^2}$$

Effective Mass Approximation

$$E(R) = E_g + \frac{h^2 \pi^2}{2R^2 m_{cv}^*} - \frac{1.8e^2}{\varepsilon_{\infty} R}$$

Spherical harmonics & Bessel Function

$$\psi(r) = \mathcal{G}_l^m(\theta, \varphi) R(r)$$

$$E_{nl} = \frac{2\hbar^2 \chi_n^2}{mD^2}$$

Electron Generation: In-Situ Reaction Monitoring

- Primary nucleation stage and Beer-Lambert effects within first 2 seconds.
- Particle growth (2-3.5s) moving from 100s to 1000s of atoms (decreased quantization)
- No further movement from 4 to 9 seconds while reflection edge forms.
- Growth + Band Filling
- Band gap expansion 9 to 30s

In-Situ Analysis of Colloidal ITO Formation

Electron Generation: Band Filling Analysis I

- Continued spectral shift due to CB filling.
- Green to Blue body color change.
- Relatively slow rate offers an opportunity for analysis of band filling.
- Compare CB filling (Free vs. Confined)

Electron Generation: Band Filling Analysis II

 $\Delta n \approx 9 \times 10^{19} \, cm^{-3}$ ~7e' added during analysis period Intrinsic ITO Parameters (Gupta 1989) $(\varepsilon_{\infty} = 8.9\varepsilon_o, m_c^* = 0.35m_e, m_{vc}^* = 0.22m_e)$

Mott Critical Concentration (ITO) $N_{c=} 5.62 x 10^{18} cm^{-3} (ITO)$

Resultant Band Gap Expansion

$$\Delta E_g^{BM} = \frac{\hbar^2}{2m_{vc}^*} (3\pi^2 n)^{2/3} \cong 0.05 eV$$

First approximation (exchange interactions only)

$$\Delta E_g = \frac{\hbar^2}{2m_{vc}^*} (3\pi^2 n)^{2/3} - \frac{e^2}{2\varepsilon_{\infty}\pi^2} (3\pi^2 n)^{1/3}$$

Free-Carrier Concentration Estimate

$$n \simeq \frac{(m_{vc}^{*})^{3}}{874.82\hbar^{6}} \left\{ \frac{0.157e^{2}}{\varepsilon_{\infty}} + \sqrt{\left(\frac{0.157e^{2}}{\varepsilon_{\infty}}\right)^{2} + 4\left(\frac{4.782\hbar^{2}}{m_{vc}^{*}}\right)\Delta E_{g}} \right\}^{3}$$

Electron Generation: Band Filling Analysis III

- Take into account particle size-distribution.
- EMA predicts ~8 confined electrons/particle are able to produce the measured expansion.
- EMA over-estimates and electron mass incr.
- 1d levels may have been reached.

Electron Generation: Support for Frank & Kostlin

- Heat dispersion in air at 150C to oxide.
- Re-disperse in chloroform.
- Band gap contraction indicating loss of conduction band electron.
- Lattice parameter contraction may indicate return of interstitial oxygen.

- ITO lattice expands due to electrostatic repulsion between $Sn^* \leftrightarrow Sn^*$ dopants.
- Interstitial oxygen should partially screen.
- Theorized that removal of O_i" would be observed as a lattice parameter expansion.
- Correlates well with band gap expansion.

Extended Growth From Pressure Anneal

<u>Summary</u>

- Rapid and cost-effective method to produce a stable dispersion of colloidal ITO nanoparticles has been developed.
- Particles are pure phase, ~5-7nm in diameter, and display an essentially single-crystalline character.
- System forms a non-agglomerated, optically clear solution and can remain in this state for months/years.
- Optical analysis indicates the intrinsic free electron concentration is on the order of 1.8 x 10²⁰ cm⁻³ or higher.
- Monitoring the generation of free electrons on different time scales (milliseconds to hours) allowed particle formation, conduction band filling, and the very origin of conductivity in ITO to be probed.
- A large volume reaction technique has been developed to promote industry adoption of this material form.