A Colloidal Nanoparticle Form of
_ Indium Tin Oxide

‘é

Innovar Scientific Inc.
Lucas, Texas USA



Overview

Introduction & Motivation

Background
= Basic Physics of ITO

System Synthesis

Basic Material Properties
System Optimization
Electron Generation

Summary




Introduction & Motivation

Indium Tin Oxide (ITO):
= Most widely used Transparent Conductive Oxide (TCQO) material.
= Essential material for all LCD and Plasma displays....currently.
= Additionally: Anti-static, heat dissipation, organic LEDs, CIGS solar
= Demand/Supply ratio rising dramatically.

Interest in a solution-dispersible nanoparticle form:
= Inkjet Printing of TCOs — process speed and less Indium waste.
= Dip-Coating for more complex geometries.

= |deal system is composed of crystalline nanoparticles that can be homogeneously
dispersed in an ink solution with no agglomeration.

A methodology has been developed to produce a colloidal nanoparticle form of ITO that
specifically meets these requirements.

Functional properties can be optimized prior to application.
Allows study of ITO by new methods.
Process can be scaled for mass-production.



Background: Transparent Conductivity
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= Degenerate doping of wide band gap >3eV

= dopant of higher valence for n-type.
= Impurity potentials w/ activation energy E,
= Spatial extent is electron Bohr radius,
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= Increased doping promotes wavefunction overlap

= Low: impurity levels are discrete w/o
significant interaction.

= Medium: potentials interact, split, and form an
impurity band.

= High: wavefunction overlap to allow
conduction by at low temperature.

= Mott Criteria: Semiconductor-to-Metal Transition

= assuming a Poisson distribution of impurities,
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Transmission, %

Background: Optical Properties of ITO

“Optical Window” between UV and IR regions.
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= Lorentz oscillator model and Drude theory

sk for the free-electron plasma.
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Background: Conduction Band Filling

no,_ ITO Undoped Indium Oxide is slightly degenerate
E

due to low level of oxygen vacancies.
= Donor doping with Sn promotes CB filling and
band gap expansion ... Burstein-Moss effect.
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k F k = Above the Mott criteria, Many-Body Interactions
promote Band Gap Narrowing.

Total Band Gap Expansion (Coulomb interactions, mutual exchange forces,
and attractive impurity scattering)
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Background: Frank and Kostlin Defect Model

_ _ _ _ = Sn(4+) substituting In(3+) = Sn*
Indium Oxide - Bixbyite

. (ZSnI'nOi")X neutral associates

structural _
8 ‘ oxygen Frank and Kostlin (1982)

: Os
b site >
O

cation | |
C’ <— cmply Reduction yields n per:
oxygen

Tty i interstitial (ZSnI.nOi")X N %Oz(g)ﬂLZSnl’n +2e.

: position
cation “ O;
= O,”absent in In,O; and always present in ITO.

= Ratio of Sn to O,”in oxidized ITO ~2

= Prevalence of these clusters will _ _
increase with Sn content. = Nearest-neighbor Sn-O-Sn associate clusters
“trap” interstitial oxygen.



System Synthesis : Rapid-Injection Method

Initiator Injection ‘ ey = “wammn -
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Diffusive Growth From Solution




Basic Properties: Composition, Phase, Morphology
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Highly crystalline particles
~5.4nm with narrow size distribution
9.3% Sn measured by ICP-MS

No tin oxide phases observed.
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Basic Properties: Surface Ligand Characteristics

_ = Dispersible with no agglomeration
Colloidal Nanopatrticles, (months / years at room temp.)
dispersed in hexane.

= FT-IR analysis of purified and
re-dispersed solution.

= C-H and C-O stretch of carboxylic acid.
N-H stretch of amine.
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Transmittance / %

Basic Properties: Optical Properties (Indium Oxide vs ITO)
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Concentrated colloidal dispersions
in hexane.

Clear reflection edge and
AE™ observed in ITO.
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System Optimization: Dopant Concentration Studies

Measured Sn Concentration (at. %)

Sn (%) | Sn (%) | Doping | Phase | SnO or Particle Lattice
Used ICP | Eff.(%)| ID SnO, | Diamter (nm) | Parameter (A)
0 0 n/a In,O; | none 9.5 10.1225
2 1.97 | 98.51 | In,O3 | none 8.5 10.1282
4 393 | 98.36 | In,O; [ none 7.6 10.1301
6 564 | 9397 | In,O; [ none 6.8 10.1327
8 742 | 9270 | In,O; [ none 6 10.1351
10 934 | 9343 | In,O3 | none 54 10.1369
12 1093 | 91.08 | In,O;3 | none 4.9 10.1381
14 12.60 | 90.03 | In,O5 [ none 4.5 10.1392
16 1441 | 90.05 | In,O; [ none 4.2 10.1399
18 16.24 | 90.21 | In,O3 | none 4.1 10.1414
20 18.03 | 90.17 | In,O3 [ none 4.1 10.1419
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Absorption Coefficient A2

5E+14
5E+14
4E+14
4E+14
3E+14
3E+14
2E+14
2E+14
1E+14
5E+13

System Optimization: Optical Effects
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Photon Energy (eV)

Band gap for each colloidal dispersion
determined with absorption coefficient.

Concentration-dependent form of the
Beer-Lambert law used.

Optimum Sn conc. for colloidal ITO lower
than that observed for typical thin films.
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Potential Influence of Electron Confinement

Free CB Electron
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Derived using classical Newtonian

mechanics and the de Broglie wave nature.

Based on momentum of the free electron.

Confined CB Electron
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Time-Independent Schrodinger
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Solution within a confined box of length L
w(X) = Asin(kx) + B cos(kx)

Only sine waves exist within and thus,
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EMA Model of Electron Confinement in ITO
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Normalized Transmissivity

Electron Generation

. In-Situ Reaction Monitoring

Primary nucleation stage and Beer-Lambert
effects within first 2 seconds.

Particle growth (2-3.5s) moving from 100s to
1000s of atoms (decreased quantization)

No further movement from 4 to 9 seconds
while reflection edge forms.

Growth + Band Filling

Band gap expansion 9 to 30s
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Maormallized Transmittance

In-Situ Analysis of Colloidal ITO Formation
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Electron Generation: Band Filling Analysis |

Indium Oxade (48 hrg) - Clear

= Continued spectral shift due to CB filling.
= Green to Blue body color change.

= Relatively slow rate offers an opportunity for
analysis of band filling.

= Compare CB filling (Free vs. Confined)

o
o

ITO Nanoparticles

o
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Time Following Synthesis
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Band Gap Expansion (eV)

Electron Generation:
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Est. free electron conc. at 120hr
n~1.8x10®°cm™>3

~14 electrons per particle

An ~9x10%cm™
~7¢e’ added during analysis period

n

Band Filling Analysis |l

Intrinsic ITO Parameters (Gupta 1989)
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Electron Generation: Band Filling Analysis Il
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Take into account particle size-distribution.

EMA predicts ~8 confined electrons/particle

are able to produce the measured expansion.

EMA over-estimates and electron mass incr.

1d levels may have been reached.
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Band Gap Expansion (eV)
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Electron Generation: Support for Frank & Kostlin
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Heat dispersion in air at 150C to oxide.
Re-disperse in chloroform.

Band gap contraction indicating loss of
conduction band electron.

Lattice parameter contraction may indic
return of interstitial oxygen.
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ITO lattice expands due to electrostatic
repulsion between Sn* «<— Sn* dopants.

Interstitial oxygen should partially screen.

Theorized that removal of O;” would be
observed as a lattice parameter expansion.

Correlates well with band gap expansion.

300

0.2eV E, Contraction
heated to 150C

in air atmosphere

0.005A Lattice Parameter
Contraction Observed on
Heating in Air

as prepared

S~

400 500 600 700 800 900 1000 1100
Wavelength (nm)




Extended Growth From Pressure Anneal

EHT = 10.00 kV

Signal A = InLens Date :26 Sep 2008
|—| WD = 3.5mm Photo No. = 3538 Time :22:25:03



Summary

Rapid and cost-effective method to produce a stable dispersion of colloidal
ITO nanoparticles has been developed.

Particles are pure phase, ~5-7nm in diameter, and display an essentially
single-crystalline character.

System forms a non-agglomerated, optically clear solution and can remain
in this state for months/years.

Optical analysis indicates the intrinsic free electron concentration is on the
order of 1.8 x 10%° cm-3 or higher.

Monitoring the generation of free electrons on different time scales
(milliseconds to hours) allowed particle formation, conduction band filling,
and the very origin of conductivity in ITO to be probed.

A large volume reaction technique has been developed to promote
industry adoption of this material form.



